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DIFFUSION

IN
FLUXES, FRICTION FORCES, AND JOULE HEATING
TWO-TEMPERATURE MULTICOMPONENT

MAGNETOHYDRODYNAMICS

C. H. Chang

Thermosciences Institute

Ames Research Center

SUMMARY

The relationship between Joule heating, diffusion fluxes, and friction forces has been studied for both

total and electron thermal energy equations, using general expressions for multicomponent diffusion in

two-temperature plasmas with the velocity dependent Lorentz force acting on charged species in a

magnetic field. It is shown that the derivation of Joule heating terms requires both diffusion fluxes and

friction between species which represents the resistance experienced by the species moving at different

relative velocities. It is also shown that the familiar Joule heating term in the electron thermal energy

equation includes artificial effects produced by switching the convective velocity from the species

velocity to the mass-weighted velocity, and thus should not be ignored even when there is no net

energy dissipation.

1. INTRODUCTION

Electrical current in a plasma that is a mixture of different types of ions, electrons, and neutral species

produces energy dissipation, i.e., Joule heating, which directly contributes to the thermal energy or

temperature of plasmas. This term is usually represented as J,/E in energy equations, where Jo and E

represent electrical current density and electric field, respectively. In the presence of a magnetic field

B, the Joule heating term includes the effect of the Lorentz force with results Jq.(E + u X B), where u

is the mass-averaged velocity of the plasma.

Due to the small mass of electrons, collisional energy transfer is inefficient between free electrons and

heavy particles. As a result, persistent temperature differences often exist between free electrons and

heavy particles, and this thermal nonequilibrium requires a separate energy equation for free electrons

to be included in the analysis. Joule heating in the electron energy equation presented in textbooks

(refs. 1, 2) takes the form of q_J,.-(E + u × B), where q,, J, =p, (u - u), and u_ are respectively the

electrical charge per unit mass, diffusive mass flux, and average velocity of species i, and subscript e

denotes free electrons. Since q,J_ is the electrical charge carried by diffusion flux, q,J,..(E + u × B)

appears to represent the work done by the motion of electrical charge through E and B.



A questionarises,however,regardingtheorigin of these terms. Forces acting on the charged species

due to E and B are body forces, and terms representing the work done by body forces should not

appear in thermal energy equations. This is precisely the reason that the work done by gravitational

forces does not appear in thermal energy equations. It simply drops out when the mechanical energy

equation for potential and kinetic energies, i.e., Bemoulli's equation, is subtracted from the total

energy equation to obtain the thermal energy equation. Joule heating, however, undeniably contributes

to the thermal energy, and its appearance in the thermal energy equation is therefore physically correct,

contradicting the fact that the work done by body forces such as electromagnetic forces should not

appear.

In the electron thermal energy equation widely used in high-temperature gas dynamics (ref. 3), the

Joule heating terr_, is simply treated as work done by body force (electric field) and added as a source

term in the electron thermal energy equation. Also in a popular magnetohydrodynamic (MHD)

description (ref. 1), the q,.J,.(E + u x B) term is brought into the electron total energy equation as the

work done by body forces, and kept in the thermal energy equation by simply ignoring the electron

inertia rather than subtracting the mechanical energy from the total energy. Obviously, both of these

approaches are unsatisfactory for the reasons explained above.

In contrast, multifluid descriptions (refs. 4, 5) treat the energy dissipation caused by the velocity

difference between electrons and ions as the sole source of Joule heating instead of the work done by

body forces. The physical mechanism of Joule heating is correctly represented in those descriptions,

since Joule heating is not related to the work done by body forces, but to the frictional dissipation, as

shown in this paper. In order to represent Joule heating as Jq, E and B, however, it is necessary to

include additional terms involving diffusion fluxes brought into the system by switching convective

velocity of the species from u_ to u. It is not, in general, possible to simply replace the frictional

dissipation term to J_.(E + u x B).

Another question arises regarding the qel,'(E + u × B) term in the electron thermal energy equation,

in particular, for the special case of zero electrical current density, i.e., J_ = E i q_J, = 0, which is

commonly referred to as "ambipolar diffusion." During the recent development of formulations for

multicomponent diffusion in plasmas (refs. 6-8), it has been shown that concentration gradients of the

charged species in plasmas result in nonzero E, even when J_ = 0. Here, the Joule heating term in the

total thermal energy equation is, of course, zero, since J_ = 0. The q,Je.(E + u x B) term in the

electron thermal energy equation, however, appears to be nonzero even in this special case. This

counterintuitive behavior can also be explained by examining the relationship between diffusion and

energy dissipation due to friction between species.

This paper presents a study of the relationships between Joule heating, diffusion fluxes, and friction

between species for total and electron thermal energy equations. It is shown that Joule heating results

from the combination of both diffusion fluxes and friction between species, which represents the

resistance experienced by the species moving at different relative velocities. Use of the hydrodynamic

theory of diffusion (refs. 8-10), instead of the standard kinetic theory (refs. 11-16), has provided a

clear and simple physical interpretation of complex phenomena of multicomponent diffusion and

frictional interaction between species in two-temperature plasmas with nonzero electrical current and

electromagnetic fields. Section 2 presents a derivation of the total and electron thermal energy

equations from the species thermal energy equation. The Joule heating terms in total and electron
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thermalenergyequationsareconstructedfromfriction forcesand diffusion fluxes brought into the

system by artificially switching convective velocities from u i to u. In addition to the real energy

dissipation (Joule heating), the q,J,..(E + u x B) term in the electron thermal energy equation therefore

includes this artificial component, and should not be ignored even when J_ = 0. Section 3 presents

physical interpretations regarding the relationships between Joule heating, diffusion fluxes, and

friction between species. Section 4 contains a few concluding remarks.

2. JOULE HEATING IN ENERGY EQUATIONS

Chemical reactions and viscous dissipation are not included for simplicity in the present analysis, since

they are not directly related to Joule heating and diffusion fluxes. The thermal energy equation for each

species i is then given by (ref. 13)

°_(P'e') _ V.(p,e_u,)=-V.q,- p,V. u + y__Q,+ y_ _'i,(u ,- u,)- F,,
& , /

(1)

where Pi and Pi are respectively the partial mass density and partial pressure of species i; e i (T) is the

partial specific internal energy of species i at temperature T,; and q, represents the conduction heat flux

vector. Q,j = -Qj, is the energy exchange between species i and j, and Fii = - F,, is the mean "friction"

force per unit volume of speciesj on species i with thej summatioq extending over N components in

the mixture. Note that Qii = 0 and F,, = 0. General expressions for heat flux vector q, have apparently

not been derived in full generality, but results are available in particular cases (refs. 2, 4, 14-16).

Nevertheless, it is not necessary to know explicit forms of q, and Q,, for current purposes. (uj - u).F(,

represents the energy dissipation by the friction between species i and j, and _,, is its fraction into

species i which is given by (ref. 13)

_',i = m' (2)
mi + m,

where m, is the mass of a single particle of species i. Fij is of the general form (ref. 8)

F,= a,.(u,- u,)+7,,

7, = [3,.VlnT-fl, .VlnT

(3)

(4)

where a,j and/3,, are frictional and thermophoretic force coefficients respectively, which now become

tensors due to the presence of B (ref. 4). a,j is related to binary diffusion coefficient tensors D,, as

(ref. 8)

D,, = pzz p-t (5)



where zi = Pi/P. Derivation of equation (1) involves all body forces, including electromagnetic forces

(ref. 13).

Although energy dissipation due to friction forces between species is represented by (u/- u).F,? the

Joule heating term represented by Jq, E, and B does not explicitly show up in equation (1) as

expected, for Joule heating is not related to the work done by the body force. Joule heating repre-

sented as Jq.(E + u x B) or q,J,,.(E + u x B) appears only in single-fluid or MHD descriptions as a

result of switching the convective velocity from u_ to u, as the following development shows. First,

equation (1) is rewritten with u as the convective velocity, with results

a(p,e,)
&

_+V.(pieiu)=-V.(q,÷hJ,)-pV.u+--.Vp i /- •
Pi z /

(6)

where h i = e i + Pi IPi is the partial specific enthalpy of species i.

A. Total Thermal Energy Equation

The total thermal energy equation is obtained by summing equation (6) over all species, with the result

ZJ' u,). F,, (7)3(pe) l- V. (peu) = -V. E (q, + h,J,)- pV. u + --. Vp, + E _,/(u/-
& , P, ,,

where e = (llp)Zipfi is the total thermal energy, p = Z i p, is the total pressure, and use has been

made of X0Q 0 = 0. Derivation of the Joule heating term consisting of Jq, E, and B requires both

X,(1/p) J:Vpi and X 0 _'0 (uj- u)-F 0 in equation (7), as shown below.

In the limit of large friction between species, in which diffusional behavior results, the partial pressure

gradient is given by (ref. 8)

vp, D. kz- + F, + F,/ (8)
p, Dt Pi ,

where D/Dt = O/& + u.V, and F, is the body force per unit mass acting on species i which is taken to

be of the form

E = g +qi( E + u ix B) (9)

where g is the acceleration of gravity.

Using equation (8), it is shown that

EL. Vp,= Eq,J, •(E+ u, x B)+ E(u,- u)- Fo
Pi J q

(10)



Use has been made of E, J, = 0. It is also shown that

• = • ×B+u×B =J,-(u×B) (11)

Frictional terms are combined together with the result

Emui+ m u /Z _',(u j- u,)" Fi/+ E(u,- u)' F,/= .F,= Z A,,
,/ i/ ,/ m, + m/ ,

(12)

Observe that Z o A,j = 0, since A,: = -Aj,. From equations (10)-(12), it is shown that

zL Vp,+ - u). F,= J_.(E+ u × B) (13)

The total thermal energy equation then becomes

c_(pe)

&
--+V.(peu)=-V.E(q,+ hJ)-pV. u + J,_-(E+ u × B)

t

(14)

Equation (14) is the standard total thermal energy equation which can be found in textbooks

(refs. 1, 2). As shown above, construction of Joule heating requires both (I) frictional forces that

represent the collision'al coupling between dissimilar species moving at different relative velocities

and (2) diffusion fluxes brought into the equation by switching the convective velocity from species

velocity u_ to the mass-averaged velocity u.

B. Electron Thermal Energy Equation

The electron thermal energy equation is obtained by simply replacing the subscript i with e in

equation (6) with the result

&

Jr"

_-V.(pe, u)=-V.(q,+hJ,,)-p,,V.u+_.Vp,,+_Q,,,+ y_',(u-u,).F,
P(, t i

(15)

Note that equation (15) contains (l/pc) J:Vp, and Z, _',.i(u,- u,).F,_ instead of the more familiar

q,J/(E + u × B) term as in equation (5.2) of section IV in reference 2. As in the case of the total

thermal energy equation, the q_J;(E + u × B) term is obtained by combining (l/p) J/Vp, and

Z, (_ (u,- u ).F,i and by further simplifications as shown below.

Replacing Vp, in equation (15) using equation (8) would not make equation (15) simpler, since more

terms would be brought in. Nevertheless, it is possible to seek further simplification by exploiting the

fact that the electron mass m. is very small compared to the masses of heavy particles. This can be



done by neglecting terms of order e 2 - m, in comparison to terms of order unity. Equation (8) for

electrons then becomes

Vp,_____:_.= q,,(E+ u × B)+ _, '_F,
(16)

Using equation (11), it is shown that

J" •Vp,,= q,J_.(E + u × B) + --. F

P,. P,.

(17)

F,., is not ignored, since oe_iis of order e - _, (refs. 7, 8). Using equation (17) and ( = 1,

equation (15) then becomes

o3(Peee )

Ot
_-V-(Peee u) = -7. (qe + heJe) - Pe V" u + qeJe" (E + u × B)

+ _Qei + __.,(1/Pi)Ji "Vei
i i

(18)

Equation (18) becomes essentially the same as equation (5.2) of section IV in reference 2, when

E, (l/p) J:F,,, is ignored, which can be done by neglecting either J_ or F,: although there is no

apparent justification for doing so.

As briefly described in section 1, the q,J/(E + u x B) term, originally brought into the system as the

work done by body forces, is kept in the electron thermal energy equation with u, as the convective

velocity (eq. (5.196) in ref. 1). This is done by ignoring the inertia of electrons instead of following

the more general practice of subtracting the mechanical energy from the total energy, which would, of

course, eliminate the q_l:(E + u x B) term in the thermal energy equation. However, equation (17)

illustrates that ignoring electron inertia also means that q,J .(E + u × B) drops out anyway from

equation (5.196) of reference 1 by canceling with the (u,. - u)-Vp, term, which is also present in

equation (5.196) of reference 1. (All frictional interactions (F,) are also neglected when electron

inertia is neglected in reference 1, which would result in an ideal MHD description without net energy

dissipation as shown below.) By using u as the convective velocity, the qeJ:(E + u x B) term is, of

course, brought back into the electron thermal energy equation, as the preceding development shows.

Further simplification could be explored by neglecting terms of order e -= _,, as well. Equation (8)

then becomes

Vp,____:==E+U × B+_.__I _y,,

P,q,. P,,q,, ,

(19)

Observe that Z., = fl,,'VlnTe, since fl,,, is order unity, and fl,., is order e 2 (ref. 17). Using

equation (19), equation (15) is rewritten, with results
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°3(peee) + V .(Peee u) = -V. (qe + heJe) - PeV" u + qeJe "(E + u x B)
&

+ _._Oei + ___(1/ pi)Ji" Yei
i i

(2O)

Equation (20) is not much simpler than equation (18), unless thermal diffusion of electrons is

negligible. Furthermore, this simplification of ignoring terms of order e, would result in an ideal MHD

description in which resistive effects vanish, since the electrical conductivity of the plasma o"is itself

of order e-t (refs. 8, 12). Observe that equation (19) is essentially equivalent to the o" _ oo limit of

equation (9.47) of reference 18, which indeed confirms the passage into the realm of ideal MHD.

(In the present context, however, the term "ideal" does not imply that the plasma flow is isentropic.

Diffusion and finite-rate chemical reactions are still irreversible processes.) Note that it still is possible

to keep resistive effects by ignoring only terms of order e 2, while keeping terms of order e, which is

precisely the way cr is represented by the binary diffusion coefficients of electrons and ions (ref. 12).

3. JOULE HEATING IN MHD

It can easily be explained that the acceleration of the charged species due to electromagnetic forces and

the resulting increase of the kinetic energy would eventually convert to the increase in random thermal

velocities through collisions (dissipation) between dissimilar species. Friction between the same

species is zero (F, = 0), and applying body forces such as gravitational or electromagnetic field does

not result in nonzero Fi,, since all the particles of the same species are subject to the same amount of

forces and acceleration. Therefore, applying g, E, or B merely changes u, rather than random thermal

velocities, and does not contribute to the thermal energy without a proper dissipation mechanism such

as friction between dissimilar species. In plasmas composed of both positively and negatively charged

particles, panicles with positive charges are accelerated by E and B in the opposite direction of the

acceleration of particles with negative charges, increasing velocity differences which in turn produces

electrical current. This increase in velocity differences is balanced by increased frictional forces repre-

sented as resistivity. In other words, the "extra" source of acceleration or driving forces due to E and

B is balanced with "extra" frictional forces, and continued supply of force and energy by E and B

results in the increase of thermal energy by friction. This clearly shows that the resistance experienced

by species moving at different velocities is an essential mechanism in Joule heating.

As shown in the preceding sections, however, diffusion fluxes are also necessary in order to represent

the Joule heating in terms of J_, E, and B in the energy equations. These diffusion fluxes are brought

into the system of single-fluid or MHD descriptions, since species in the plasma in these descriptions

are thought to be moving with the convective velocity of the mass-weighted velocity u of the mixture

rather than with their own velocities u,. If u, is kept as the convective velocity, there is no Joule

heating term consisting of Jr' E, and B in the energy equations as in equation (1), consistent with the
fact that the work produced by body forces should not appear in thermal energy equations.

In multifluid descriptions, in which each species has its own momentum and energy equations, Joule

heating terms do not explicitly show up in the species thermal energy equations. Nevertheless, Joule
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heating is provided to the system by acceleration terms in the species momentum equation and

frictional dissipation in the species energy equation, as explained above. The electron energy equation

in widely used multifluid descriptions (refs. 4, 5) involves the frictional dissipation in the system,

consistent with the mechanism described above. However, simple conversion of the frictional term to

the Joule heating as in equation (2.18) of reference 4 is valid only when Vp_ is ignored, as shown in

equation (17). This can also be easily observed by inspecting equations (2.2e) and (2.18) in
reference 4.

In contrast, the increase in differences between species velocities due to the electromagnetic field is not

represented by the single momentum equation for the whole mixture used in single-fluid or MHD

descriptions (refs. 1, 2). Diffusion fluxes nevertheless include the increase in species velocity differ-

ences caused by extra driving forces due to E and B which are, of course, balanced with friction

between species as described above. The species velocity differences and frictional dissipation eventu-

ally become the Joule heating term in energy equations, when diffusion fluxes are combined with the

frictional dissipation terms as shown in the preceding section.

When Jq = 0, the Joule heating term in the total thermal energy equation is, of course, zero. However,
the q,.J_.(E + u × B) term in equation (18) or (20) does not vanish even in this special case as the

question raised in section 1 shows. The fact that concentration gradients of the charged species in

plasmas result in nonzero E, even when J_ = 0, can easily be illustrated by equation (19). In

particular, in the absence of magnetic field and temperature gradient, equation (19) simply becomes

E= vp,__= (21)
Peqe

This has the simple and intuitive interpretation that electrons are in an electrostatic equilibrium with the

electric field E, which is precisely analogous to hydrostatic equilibrium in a gravitational field. E in

equation (21) is not induced by charge separation as discussed in a previous study (ref. 19). On the

contrary, charge neutrality in the plasma is preserved by this E (refs. 6, 7).

The preceding development shows that qeJ_.(E + u x B) is obtained by combining the frictional

dissipation represented by E i _'e_(u,- ue).F, with (1/pe) J.Vpe which is artificially brought into the

system by switching the convective velocity from u e to u. Since (l/p,.) Je.Vp_ is in general nonzero,

the qele.(E + u × B) term obviously is nonzero as well. In other words, the qel;(E + u x B) term

involves an artificial effect of switching the convective velocity in addition to the energy dissipation by

friction, and thus should be included in the electron thermal energy equation even when Ju = 0.

Note that equations (19) and (21) are derived by neglecting the terms of order e in equation (16). Since

the frictional force coefficient ot,, is also of order e, a,,_ vanishes from the system, which in turn results

in infinite electron diffusion coefficients (eq. (5)) and electrical conductivity (refs. 8, 12). In other

words, zero m e simply deactivates frictional interaction between electrons and other species, and

frictional dissipation and resistive effects vanish. In this simplification, qrle.(E + u × B) merely

replaces (l/p,,) J,.Vp, and no energy is dissipated by this term.



WhenJ_andm, are not zero, the correct amount of Joule heating is produced by the "extra" diffusion

of charged species induced by "extra" driving forces, as explained above. This can be automatically

accomplished, when J,, E, and B are consistently determined by solving the generalized Stefan-

Maxwell equations (ref. 8) involving nonzero m,, and Maxwell's relations in a coupled manner. The

solution of these equations determines E as well as J,, and this implicitly determines the relation

between E and Jq, i.e., Ohm's law. This shows that Ohm's law is not an independent constitutive

relation in multicomponent MHD, and it is not, in general, possible to express Jq directly in terms of
E, e.g., "generalized" Ohm's law, without determining Ji.

4. CONCLUDING REMARKS

A study has been presented of the relationship between diffusion fluxes, friction forces, and Joule

heating in two-temperature multicomponent MHD, using hydrodynamic theory of diffusion

(refs. 8-10) which provides a clear physical interpretation. It has been shown that energy produced

by ,]q flowing through E and B contributes to thermal energy via additional driving forces for diffusion

by E and B and the resistance experienced between dissimilar species moving at different relative

velocities rather than the work done by body forces as described in previous studies (refs. 1-3). It is a

coincidence that the q_J,.(E + u × B) term brought into the electron thermal energy equation as the

work done by body forces (refs. 1-3) is identical to the term derived in this paper from frictional

dissipation and diffusion fluxes.

Derivations of both total and electron thermal energy equations have also been presented, and it has

been illustrated that the derivation of Joule heating terms requires both diffusion fluxes and friction

forces between species. The q,J,.(E + u × B) term in the electron thermal energy equation involves

the (l/p,3 J,.Vp_ term, which is artificially brought into the system by switching the convective

velocity from u,, to u. (l/p) J,.Vpe is not, in general, negligible, and q,,J -(E + u × B) therefore

should not be ignored, even when J_ = 0.

Ignoring frictional interaction between species, in particular between electrons and other species, leads

to equations (19) and (21). Evaluating E using equation (19) or (21) results in an ideal MHD descrip-

tion, and thus should be avoided to keep resistive effects. The proper amount of Joule heating would

automatically be produced when J_, E, and B are evaluated by solving generalized Stefan-Maxwell

equations (ref. 8) involving nonzero m_ and Maxwell's relations.

It is not obvious that the E, (l/p,) J/F, term in equation (18) could indeed be neglected, especially

when Jq = 0, where electron and heavy particle diffusion velocities would be comparable. (The

Y_, (,,, (u,- u.).F_, term in equation (15) is not negligible, since diffusion velocity of electrons for

nonzero Jq can be large.) Nevertheless, evaluation of those terms does not represent additional

complexity in multicomponent MHD, since friction coefficients a,j (or diffusion coefficients D_j) and

diffusion fluxes J, are obtained anyway, when species conservation equations are solved.
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